

Digital Process & Architecture: Data, Deployment & Notifications

Ross Smith, Chief Architect

Agenda

What we're here to talk about

Major Architecture Topics

• What is the ELK Stack?

Opportunities

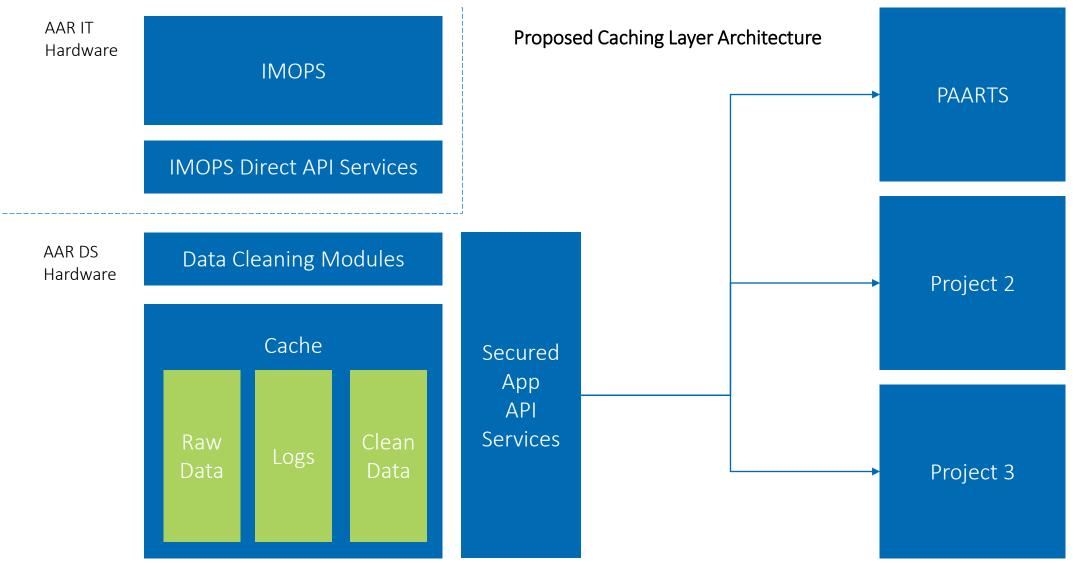
Major Architecture Topics

1. Data Loading

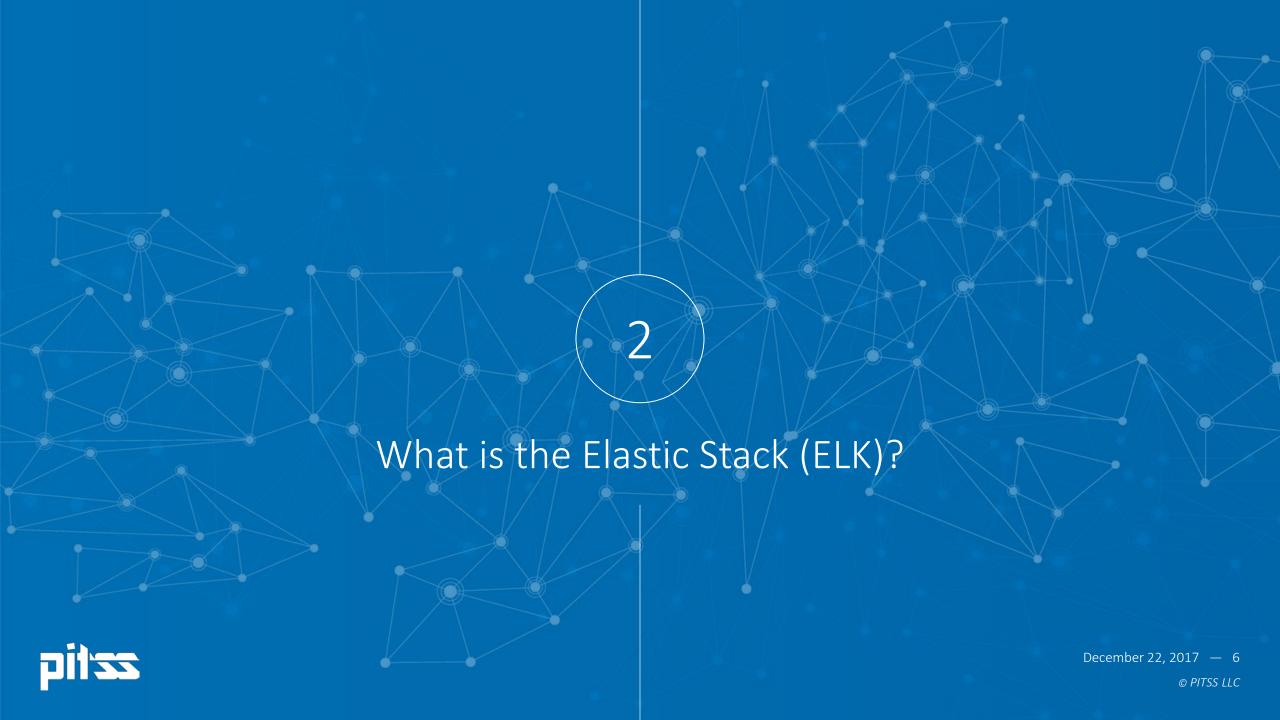
- Data Cleaning vs. Upstream Dependencies (Addresses, DISTRIB/Multiple Product Sources)
- Re-Using Data Across Systems

2. Deployment Pipeline

IT Controlled Process vs. DS-Controlled


3. Logging and Diagnostics

Local Logging vs. Aggregated


4. User Event Notifications

In-App vs. Polling vs. Aggregated

Introduction to Elasticsearch

- An open-source, broadly-distributable, readily-scalable, enterprisegrade search engine. Accessible through an extensive and elaborate API, Elasticsearch can power extremely fast searches that support your data discovery applications.
- Goals: Reduce technical debt involved with upgrading legacy systems for modern architectures
- Allow new applications to read against data from legacy systems by leveraging their existing processes
- Elastic offers flexible models starting with Free Open Source to Multi-Tiered Enterprise Support Subscriptions.

Introduction to Elasticsearch

17 systems in ranking, December 2017

	Rank		· ·		Score	
Dec 2017	Nov 2017	Dec 2016	DBMS	Database Model	Dec Nov 2017 2017	
1.	1.	1.	Elasticsearch 🗄	Search engine	119.78 +0.37	+16.51
2.	2.	2.	Solr	Search engine	66.30 -2.86	-2.70
3.	3.	3.	Splunk	Search engine	63.79 -1.08	+8.87
4.	4.	4.	MarkLogic	Multi-model 🚺	11.15 -0.40	+0.82
5.	5.	5.	Sphinx	Search engine	6.03 +0.15	-1.00
6.	6.	↑ 8.	Microsoft Azure Search	Search engine	4.11 +0.24	+2.08
7.	7.	1 9.	Algolia	Search engine	3.06 +0.28	+1.44
8.	1 9.	4 7.	Amazon CloudSearch	Search engine	2.73 +0.37	+0.58
9.	4 8.	4 6.	Google Search Appliance	Search engine	2.73 -0.03	+0.16
10.	1 1.	10.	Xapian	Search engine	0.61 +0.04	+0.11
11.	4 10.	1 2.	CrateDB	Multi-model 🚺	0.59 -0.07	+0.38
12.	12.	1 4.	SearchBlox	Search engine	0.23 -0.01	+0.13
13.	1 5.	1 5.	DBSight	Search engine	0.00 -0.02	-0.01
14.	4 13.	1 6.	Exorbyte	Search engine	0.00 -0.06	±0.00
14.	1 6.	4 11.	Indica	Search engine	0.00 ±0.00	-0.36
14.			Manticore Search	Search engine	0.00	
14.	14.	1 6.	searchxml	Multi-model 🚺	0.00 -0.04	±0.00

Source: http://db-engines.com/en/ranking/search+engine

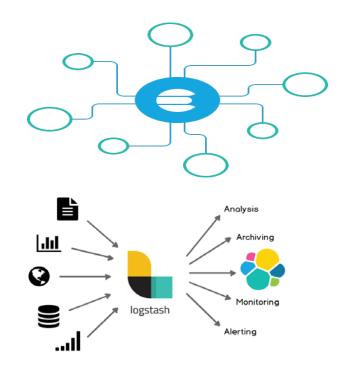
The Elastic Stack

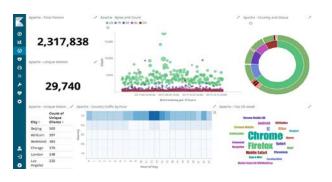
By combining the massively popular Elasticsearch, Logstash, and Kibana, Elastic has created an end-to-end stack that delivers actionable insights in real time from almost any type of structured and unstructured data source.

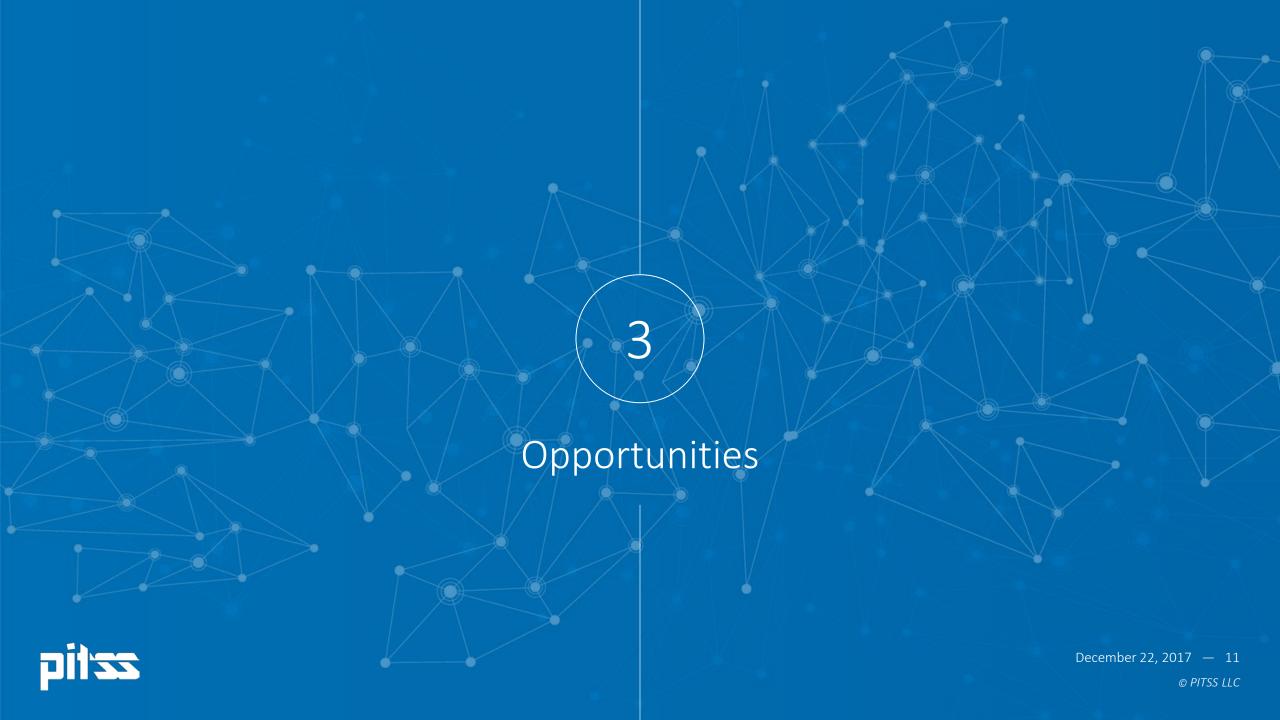
The Elastic Stack

Elasticsearch

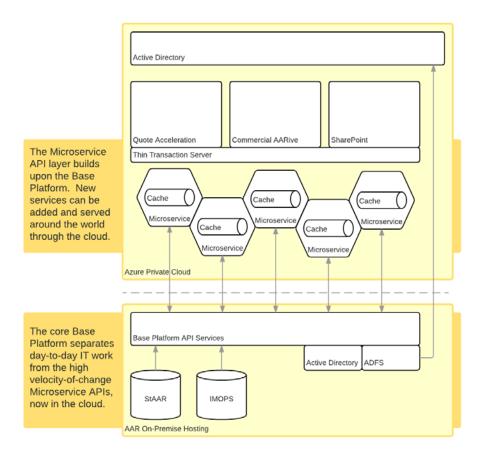
- Horizontally scalable database
- Stores structured or unstructured data
- Freetext search of billions of records in seconds


Logstash


- Smart transactional monitoring
- Loads log files and deltas into Elasticsearch
- Handles high number of high volume, varied data sources ("Beats")


Kibana

- Light configuration-driven and WYSIWYG dashboard and reporting console
- GUI to monitor Elasticsearch data in real time


Platform API Services Architecture

Recommended Future State Architecture

- Scalable AAR applications in the cloud, with data supplied by microservices
- Microservices intelligently cache and provide data from IMOPS, preserving the system of authority
- Support microservices with on-premise Platform API Service layer closely tied to IMOPS DB

This is the PITSS architecture proposed in June 2016.

Elasticsearch enables and simplifies this future.

APIs and Analytics

Read-Only APIs

- Reduce the query load on IMOPS
- Exposes default Elasticsearch query APIs, reducing the work in custom development
- Scalable to serve wide variety of use cases with minimal change in tech footprint0

System Analytics

- Monitor uptime and health of both on-premise AAR systems and cloud-based applications
- Designed to integrate with cloud-based infrastructure health checks and management

Proof of Concept

Proof of Concept Estimate

ID	POC Task Description	PITSS Hours	PITSS Cost
1	Finalize project design	20	\$2,800.00
2	Stand up Oracle DB with partial IMOPS schema wiith journal tables	32	\$4,480.00
3	Write simple CRUD web service against DB tables	16	\$2,240.00
4	Set up Gatling to fire calls against CRUD API	16	\$2,240.00
5	Stand up ELK stack in AWS EC2 or Azure	8	\$1,120.00
6	Write a simple Elasticsearch provider in Java based on journal tables	32	\$4,480.00
7	Write a reconciliation API to test for inconsistency and latency across DB and ELK stack	32	\$4,480.00
8	Write process documentation, ELK API integration recommendations, benchmark results, and implementation recommendations for AAR	40	\$5,600.00
9	Meetings (estimated 10% time)	20	\$2,800.00
	TOTAL	216	\$30,240.00

